125V DC excitation system of CE Casecnan Water and Energy Company, Inc.

Ron Reinel Descallar Luclucan

Follow this and additional works at: https://www.ukdr.uplb.edu.ph/etd-undergrad

Recommended Citation
125 V DC EXCITATION SYSTEM OF CE CASECNAN WATER AND ENERGY COMPANY, INC.

RON REINEL DESCALLAR LUCLUCAN
2004-36662

SUBMITTED TO THE FACULTY OF THE COLLEGE OF ENGINEERING AND AGRO-INDUSTRIAL TECHNOLOGY, UNIVERSITY OF THE PHILIPPINES LOS BAÑOS, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

MAY 2009
Table of Contents

Biographical Sketch iii
Acknowledgement iv
Table of Contents vi
List of Figures viii
I. Introduction 1
 A. Description of the Study 2
 B. Significance of the Study 2
 C. Objectives of the Study 3
 D. Scope and Limitations 3
 E. Date and Place of Study 4
 F. Company Profile 5
 G. Training Activities 6
II. Review of Related Literature 8
 A. Types of excitation System 9
 A.1. Static Type Excitation System 9
 A.2. Brushless Type Excitation System 12
 B. Basic Static Excitation Configuration 13
 C. Legacy of Static Excitation Systems 14
 C.1 Electrical Requirements of a Static Excitation System 15
 C.1.1 Sensing Requirements 15
 C.1.2 Field Power Requirements 16
 C.2. Sources of excitation Power for an Excitation System 16
III. Study Methodology 20
IV. Discussion and Analysis 23
 A. Excitation System Description 24
 A.1. Excitation Transformer 25
 A.2. Rectifier Cubicle 28
 A.2.1 Rectifier 28
 A.2.2 Air Cooling System 29
 A.3. Input Cubicle 29
 A.3.1 Field Flashing Circuit Breaker 29
 A.3.2 Over Voltage Protection 30
 A.3.3 De-excitation Equipment 30
 A.4 Control Cubicle 31
 A.4.1 Control Cubicle Power Supply 31
 A.4.2 SYMADYN-D OP1 Local Operator Panel 31
 B. Operation 33
 C. System Protection 38
 C.1 Limiters 39
 C.2 Protective Relays 41
V. Observations 42
VI. Conclusions 44
VII. Recommendations 47
References 49
Appendices
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power House Cavern</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Location Map of CE CECWEC</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Basic Diagram for an Excitation System</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Basic Components of a Static Type Excitation System</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Static Excitation System</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Brushless Excitation System Parts</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Basic Field Flashing</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Excitation Transformer (Primary Side)</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Excitation Transformer</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Inside the Rectifier Cubicle</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>SYMADYN-D OP1 Local Operator Panel</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>125 V DC Station Batteries</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>Diagram of Power Pathway in the Excitation System at Startup</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>125 V DC Main Distribution Panel</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>Power Pathway Without Field Flashing</td>
<td>37</td>
</tr>
</tbody>
</table>
I. INTRODUCTION