•  
  •  
 

Journal of Economics, Management and Agricultural Development

Publication Date

12-31-2021

Abstract

Electricity price forecasting is an important tool used by market players in decision-making and strategizing their participation in the electricity market. In most studies, market-clearing price is forecasted as it gives an aggregated overview of system price. However, locational marginal price (LMP) gives better outlook of the price particular to the customer location in the electrical power grid. This study utilizes Artificial Neural Networks to forecast weekday LMP of generator and load nodes. Various inputs such as historical prices and demand, and temporal indices were used. Using data for selected nodes of the Philippine Wholesale Electricity Spot Market, forecast Mean Average Percentage Error (MAPE) of 6.8% to 6.9% were obtained for generator and load node forecasts, with better prediction intervals than ARIMA models. The results showed that the proposed method of using the LMP of adjacent generator nodes in forecasting load node LMP results in significant improvement of forecast

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.