"Diffusion of atomic oxygen on the Si(100) surface" by Pooja Arora, Wei Li et al.
 

Diffusion of atomic oxygen on the Si(100) surface

Issue Date

2010

Abstract

The processes of etching and diffusion of atomic oxygen on the reconstructed Si(100)-2 × - 1 surface are investigated using an embedded cluster QM/MM (Quantum Mechanics/Molecular Mechanics) method, called SIMOMM (Surface Integrated Molecular Orbital Molecular Mechanics). Hopping of an oxygen atom along the silicon dimer rows on a Si15H16 cluster embedded in an Si136H92 MM cluster model is studied using the SIMOMM/UB3LYP (unrestricted density functional theory (UDFT) with the Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid functional) approach, the Hay-Wadt effective core potential, and its associated double-ζ plus polarization basis set. The relative energies at stationary points on the diffusion potential energy surface were also obtained with three coupled-cluster (CC) methods, including the canonical CC approach with singles, doubles, and noniterative quasi-perturbative triples (CCSD(T)), the canonical left-eigenstate completely renormalized (CR) analogue of CCSD(T), termed CR-CC(2,3), and the linear scaling variant of CR-CC(2,3) employing the cluster-in-molecule (CIM) local correlation ansatz, abbreviated as CIM-CR-CC(2,3). The pathway and energetics for the diffusion of oxygen from one dimer to another are presented, with the activation energy estimated to be 71.9 and 74.4 kcal/mol at the canonical CR-CC(2,3)/6-31G(d) and extrapolated, CIM-based, canonical CR-CC(2,3)/6-311G(d) levels of theory, respectively. The canonical and CIM CR-CC(2,3)/6-31G(d) barrier heights (excluding zero point vibrational energy contributions) for the etching process are both 87.3 kcal/mol. © 2010 American Chemical Society.

Source or Periodical Title

Journal of Physical Chemistry C

ISSN

1932-7447

Volume

114

Issue

29

Page

12649-12658

Document Type

Article

Language

English

Subject

Chemical structure, Silicon, Energy, Chemical calculations, Diffusion

Identifier

doi:10.1021/jp102998y.

Digital Copy

yes

Share

COinS