From epigenetic landscape to phenotypic fitness landscape: Evolutionary effect of pathogens on host traits
Issue Date
7-2017
Abstract
The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.
Source or Periodical Title
Infection, Genetics and Evolution
ISSN
1567-1348
Volume
51
Page
245-254
Document Type
Article
Physical Description
illustrations, tables, graphs
Language
English
Subject
Biodiversity, Disease, Inclusive inheritance, Mathematical model, Parasitism, Red Queen
Recommended Citation
Cortez, M.J.V., Rabajante, J.F., Tubay, J.M., Babierra, A.L. (2017). From epigenetic landscape to phenotypic fitness landscape: Evolutionary effect of pathogens on host traits. Infection, Genetics and Evolution 51, 245-254.
Identifier
https://doi.org/10.1016/j.meegid.2017.04.006
Digital Copy
yes
En – AGROVOC descriptors
Parasitism; Disease; Inclusive inheritance; Biodiversity; Mathematical model; Red Queen